CAUCHY'S CONDENSATION TEST

(B.Sc.-II, Paper-III)

Group-B

Sudip Kumar

Assistant Professor,
Department of Mathematics
Sachchidanand Sinha College
Aurangabad, Bihar

(Cauchy's Condensation test) Statement: Let {f(1), f(2), -----, f(n), ----} be a sequence of positive terms such that for all n. Then the series Ef(n) and Zanfan) - converge or diverge together (Where a is any positive integer> 1). Poroof: -> : $\Sigma f(n) = f(1) + f(2) + --- + f(n) + ---$ is a series of positive terms. .. We can group (bracket) the terms of series without changing its nature. We group the terms of Et(n) as follows: [f(1) + f(2) + ----- + f(a)} + {f(a+1) + f(a+2) + --- + f(a2)} + \f(a^2+1) + f(a^2+1) + ----- + f(a^3)} es The socitive denne. If in denotes the sum of the terms of the nth group, then

 $y_n = f(a^{n-1}+1) + f(a^{n-1}+2) + \cdots + f(a^n)$.

Now, since f(n) is decreasing.

 $f(a^n) \leq each + e_1 m \text{ of } \forall n \leq f(a^{n-1})$

Also the <u>number</u> of <u>terms</u> in the nth group = an-an-1

 $(a^{h}-a^{h-1})f(a^{h}) \leq v_{n} \leq (a^{h}-a^{h-1})f(a^{h-1}).$

 $\therefore 2n \leq (a-1)a^{n-1} + (a^{n-1})$ and

 $v_n > \frac{(a-1)}{a} a^n f(a^n)$ — 3

From (i), if $\Sigma a^h f(a^h)$ is convergent i.e. if $\Sigma a^{n-1} f(a^{n-1})$ is convergent then ΣV^n is convergent then ΣV^n is convergent by comparision test. (: a-1)0)

From (ii), if $\Sigma a^n f(a^n)$ is divergent then ΣV_n is divergent by companision test. $(: \frac{a-1}{a} > 0)$

- convergent or divergent.
 - ... The two series I'm and Ianfan, converge or diverge together.

Ef(n) and
$$\Sigma a^h f(a^h)$$
 converge or diverge together.

Examples -> Prove that
$$\sum_{n=2}^{\infty} \frac{1}{n (\log n)^p}$$
 is convergent if $p>1$ and divergent if $p<1$.

Proof: → Let
$$f(h) = \frac{1}{h(\log n)^{p_0}}$$

In this case

$$\frac{1}{n \left(\log n\right)^{p}} > \frac{1}{(n+1) \left\{\log (n+1)\right\}^{p}}; \forall n > 2$$

.: f(n) is a decreasing sequence of positive terms. is By composition test

Let a>1.

Then,
$$a^h f(a^h) = a^h \cdot f a^h (\log a^h)^h$$

.. By cauchy's condensation test

Sten) and santon converse of any 3e

 $\therefore \sum_{n} \frac{1}{n}$ is convergent if p>1.

Therefor \(\frac{1}{2} \ \frac{1}{n(logn)} \) is convergent for \(\psi \) \(1 \).

And Since \sum_{nP} is divergent for $P \leq 1$.

The series \(\frac{1}{2} \frac{1}{h(\logn)P} \) is divergent

for 0< p < 1.1 - 980

case-z: → Let P < 0.

In this case Ball (+n)

h (wgh)P

.. By companision test

The series $\sum_{n \text{ (logn)}}^{\infty} p$ is divergent.

cauchy's condensation test

Example @: + Discuss the convergence of

Solution: -

The summation must start from nzm for which the terms are defined.

Therefor for any positive integer a>1.

$$a^{h}f(a^{h}) = a^{h} \frac{1}{a^{h}(\log a^{h})} (\log \log a^{h})^{h}$$

is it Eva is disorgord then Elen i.e.

Let
$$v_n = \frac{1}{n(\log n)^p}$$

.. By comparision test

is if I'm is convergent then Sun i.e.

Σαλ f(ah) is convergent and so Σf(n) is convergent by cauchy's condensation test.

(ii) if ΣVn is divergent then ΣUn i.e, $\Sigma a^{h} f(a^{h})$ is divergent and so $\Sigma f(n)$ is divergent by cauchy's condensation test.

But since $\Sigma V_n = \sum \frac{1}{n(\log n)^p}$ is convergent for P > 1 and divergent for $P \le 1$.

: \(\Start\) is convergent if \$>1 and divergent if \$P\$1.

Scanned with CamScanner

Cauchy's condensation test

Example 1 discuss the convergence of the series \(\frac{1}{n=9} \frac{1}{\logn} \)

solution: → Let un = logn

: {un} is a decreasing sequence. i.e. un>un+1>0, + n>,2.

: By cauchy's condensation test, the series \sum and \sum

diverge together. (Where a>1).

Now, $\sum_{n=2}^{\infty} a^n u_{an} = \sum_{n=2}^{\infty} a^n \frac{1}{\log a^n}$

$$= \sum_{n=2}^{\infty} \frac{a^n}{n \log a} = \frac{1}{\log a} \sum_{n=2}^{\infty} \frac{a^n}{n}.$$

Let $v_n = \frac{a^n}{b}$

 $\lim_{n\to\infty} (v_n)^{\frac{1}{n}} = \lim_{n\to\infty} \frac{a}{n+n} = a > 1.$

.. By cauchy's proof test,

I'm is divergent

 $\Rightarrow \sum_{n=2}^{\infty} a^n u_{an}$ is divergent $\Rightarrow \sum_{n=2}^{\infty} u_n$ is divergent.

Example Discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$.

Solution: + Let f(n) = 1 nlogn.

the I would end you a prome

: [hlogh] is an increasing sequence,

: [f(n)] is a decreasing sequence.

i.e. f(n) > f(n+1) > 0, $\forall n \ge 2$.

.. By cauchy's condensation test, the series $\Sigma f(n)$ and $\Sigma a^n f(a^n)$ converge or diverge together (Hhere a>1).

Now, $\sum_{n=2}^{\infty} a^n f(a^n) = \sum_{n=2}^{\infty} a^n \frac{1}{a^n \cdot \log a^n}$

$$= \sum_{n=2}^{\infty} \frac{1}{n \log a} = \frac{1}{\log a} \sum_{n=2}^{\infty} \frac{1}{n}$$

: $\sum_{n=2}^{\infty} \frac{1}{n}$ is divergent $\Rightarrow \sum_{n=2}^{\infty} a^n f(a^n)$ is divergent

$$\Rightarrow \sum_{n=2}^{\infty} f(n)$$
 is divergent

Example 31→ Discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\log n}}$

solution: → Let f(n) = 1 / Logn

:: {nvlogn} is an increasing sequence.

.. (f(n)) is a decreasing sequence.

i.e., f(n) > f(n+1) > 0, $\forall n > 2$.

series $\sum_{n=2}^{\infty} f(n)$ and $\sum_{n=2}^{\infty} a^n f(a^n)$ converge

or diverge together (where a>1).

$$\sum_{n=2}^{\infty} a^n f(a^n) = \sum_{n=2}^{\infty} \frac{a^n}{a^n} \frac{1}{\sqrt{\log a^n}} - \sum_{n=2}^{\infty} \frac{1}{\sqrt{n \cdot \log a}}$$

is divergent $\Rightarrow \sum_{n=2}^{\infty} a^n f(a^n)$ is divergent

$$\Rightarrow \sum_{n=2}^{\infty} f(n) \text{ is divergent.}$$

1